In this lesson we study lines. Just as we measure weight and temperature by a number, we measure the "steepness" of a line by a number called its slope.

Definition 1. Slope of a Line: The slope of a nonvertical line that passes through the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is denoted by m and is defined by

$$m = \frac{change in y - coordinates}{change in x - coordinates} = \frac{y_2 - y_1}{x_2 - x_1}, \ x_1 \neq x_2.$$

The slope of a vertical line is undefined.

Example 1. Find the slope of the line passing through P(1, -1) and Q(3, 3). Solution:

$$m = \frac{change in y - coordinates}{change in x - coordinates}$$
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{3 - (-1)}{3 - 1}$$
$$= \frac{4}{2} = 2$$

Definition 2. Point-Slope Form of the Equation of a Line: If a line has slope m and passes through the point (x_1, y_1) , then the point-slope form of an equation of the line is

$$y - y_1 = m(x - x_1).$$

Example 2. Find the equation of the line in example 1. **Solution:** We know that the slope is m = 2, then we can use either P(1, -1) or Q(3, 3) to find the equation of the line. Hence

$$y - y_1 = m(x - x_1)$$

 $y - (-1) = 2(x - 1)$
 $y + 1 = 2x - 2$
 $y = 2x - 3$

Definition 3. Slope-Intercept Form of the Equation of a Line: The slope-intercept of the equation of the line with slope m and y-intercept b is

$$y = mx + b.$$

Definition 4. Horizontal and Vertical Lines:

- 1. An equation of a horizontal line through (h, k) is y = k.
- 2. An equation of a vertical line through (h, k) is x = h.

Definition 5. Standard Form of the Equation of a Line The equation

$$ax + by + c = 0$$

is called the standard form of the equation of a line. Note that a, b, and c are constants.

Example 3. Find the slope and y-intercept of the line with equation 3x - 4y + 12 = 0. Solution: The goal is to rewrite the equation 3x - 4y + 12 = 0 in the slope-intercept:

$$3x - 4y + 12 = 0 \quad original \ equation$$
$$3x + 12 = 4y \quad isolate \ y$$
$$y = \frac{1}{4}(3x + 12) \quad dividing \ by \ 4$$
$$y = \frac{3}{4}x + 3 \quad simplify$$

Hence, the slope of the line of equation 3x - 4y + 12 = 0 is $m = \frac{3}{4}$ and the y-intercept is b = 3.

Definition 6. Parallel and Perpendicular Lines: Let L_1 and L_2 be two distinct lines with slopes m_1 and m_2 , respectively. Then

 L_1 is parallel to L_2 if and only if $m_1 = m_2$

 L_1 is perpendicular to L_2 if and only if $m_1 \cdot m_2 = -1$

Example 4. Let L: 2x - 3y + 6 = 0 be a straight line. Let L_1 and L_2 be two lines passing through the point (2,8). Let L_1 be parallel to L and L_2 be perpendicular to L. Find the equations of L_1 and L_2 .